Exercise 7

Find an equation of the tangent line to the curve at the given point.

$$
y=\sqrt{x}, \quad(1,1)
$$

Solution

Start by finding the slope of the tangent line to the curve at $x=1$.

$$
\begin{aligned}
m=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1} \frac{\sqrt{x}-\sqrt{1}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{(\sqrt{x}+1)(\sqrt{x}-1)} \\
& =\lim _{x \rightarrow 1} \frac{1}{\sqrt{x}+1} \\
& =\frac{1}{(1)+1} \\
& =\frac{1}{2}
\end{aligned}
$$

The general equation of a line is

$$
y=m x+b
$$

Here the slope is $m=1 / 2$.

$$
y=\frac{1}{2} x+b
$$

Use the fact that the line passes through $(1,1)$ to determine b.

$$
\begin{gathered}
1=\frac{1}{2}(1)+b \\
1=\frac{1}{2}+b \\
b=\frac{1}{2}
\end{gathered}
$$

Therefore,

$$
y=\frac{1}{2} x+\frac{1}{2} .
$$

Below is a plot of the curve and the tangent line at $x=1$.

